
An Interactive 2D-to-3D Cartoon
Modeling System

Lele Feng(&), Xubo Yang(&), Shuangjiu Xiao, and Fan Jiang

School of Software, Shanghai Jiao Tong University, Shanghai, China
lelefeng1992@gmail.com, yangxubo@sjtu.edu.cn

Abstract. In this paper, we propose an interactive system that can quickly
convert a 2D cartoon painting into a 3D textured cartoon model, enabling
non-professional adults and children to easily create personalized 3D contents.
Our system exploits a new approach based on solving Poisson equations to
generate 3D models, which is free from the limitations of spherical topology in
prior works. We also propose a novel method to generate whole textures for
both sides of the models to deliver colorful appearances, making it possible to
obtain stylized models rendered with cartoon textures. The results have shown
that our method can greatly simplify the modeling process comparing with both
traditional modeling softwares and prior sketch-based systems.

Keywords: Modeling interface � Deformation � Texture � Interactive modeling

1 Introduction

The demand for personalized 3D models is rapidly growing with the increasing appli-
cations of emerging technologies like 3D printing and augmented reality. However, for
novice users, it is difficult to build 3D models using professional modeling systems.
Traditional 3D modeling tools, such as Maya [1] and 3ds Max [2] require users to learn a
complicated interface, which are daunting challenges for novice users. In order to
simplify the 3D modeling pipeline, sketch-based modeling systems, such as Teddy [3]
and its follow-up works [4–8] presented approaches to create 3D models from 2D
strokes. However, these systems have some common limitations. First, most of these
systems require users to sketch from a large number of different views, making it
difficult for novice users to complete their tasks. Second, these systems cannot generate
models from 2D cartoon images directly and only use them as the guide images. In order
to create desired models, users have to draw carefully to make their sketch match with
the silhouettes in guide images. As a result, the silhouettes of the final shape may differ
from the input sketch, which may be undesired. Third, shapes that can be handled by
these systems are also limited. For example, they do not allow cycles of connection
curves. Surfaces with edges or flat surfaces also cannot be generated directly. Finally,
models generated by these systems lack texture information, thus the rendering of these
models cannot take advantage of the original paintings. Unlike sketch-based systems,
Ink-and-Ray [9] involves Poisson equations to produce bas-relief meshes, which can
support global illumination effects for hand-drawn characters. However, the resulted

© Springer International Publishing Switzerland 2016
A. El Rhalibi et al. (Eds.): Edutainment 2016, LNCS 9654, pp. 193–204, 2016.
DOI: 10.1007/978-3-319-40259-8_17



meshes are not full 3D models, which limit their usage and artifacts may appear when
rendered with a perspective camera or from different views.

The goal of our work is to design a system that allows creating full three-
dimensional models from two-dimensional cartoon images directly without requiring
much input. Our system makes it possible to quickly create a consistent 3D model with
full textures.

Contributions. We introduce an interactive system to help non-professional users to
build their own personalized 3D contents, where a full 3D textured cartoon model can
be created easily from a single 2D cartoon image. First, our system employs an
automatic segmentation method to reduce the difficulty of sketching silhouettes in the
previous works. Second, the algorithm of mesh generation used by our system can
handle a large range of models, including holes and sharp edges. We also introduce a
method to generate textures for full models, which is not supported by prior works. Our
results show that our system makes it an easy task for novice users to create person-
alized 3D models from cartoon paintings.

2 Related Work

Many efforts have been made in constructing 3D models from 2D images. Previous
systems can be classified into three groups: sketch-based modeling systems,
single-view modeling systems and pseudo 3D modeling systems.

2.1 Sketch-Based Modeling System

Sketch-based 3D modeling has been a popular research field. Systems such as Teddy
[3] and its descendants ShapeShop and [4] FiberMesh [5] approached the problem by
asking users to sketch from many views, leveraging users’ 2D drawing skills. A good
survey can be found in [10]. RigMesh [8] presented an approach to modeling and
rigging in contrast to the traditional sequential. However, their system cannot generate
a desirable shape when the input sketch does not have an obvious symmetry axis.
Moreover, all of these methods cannot deliver textured models, unless users draw
colorful strokes on the models directly. In addition, due to their modeling methods
(limited to spherical topology), the range of models that these systems can handle is
limited. Surfaces with edges or flat surfaces cannot be generated directly. And they do
not allow cycles of connection curves. Another drawback of their methods is requiring
users to sketch from a large number of different views. Schmidt et al. [11] found that
novice users were unable to complete their tasks and became frustrated very easily with
the change of views.

2.2 Single-View Modeling System

In order to solve the problems in multi-view sketch-based systems, many single-view
modeling systems are proposed. In Gingold et al. [7], structured annotations were
introduced for 2D-to-3D modeling. In their implementation, the user can add some

194 L. Feng et al.



primitives and annotations, which are structured and semantic. The system then gen-
erates 3D models from inconsistent drawings. However, adding annotations from a
single view demands decent 3D perspective understandings, which is difficult and
time-consuming for novice users. A similar work using annotations is Naturasketch
[12]. The system is a sketch-based modeling system per se, but it solved the problems
in sketch-rotate-sketch workflow by introducing multiple annotations. Karpenko and
Hughes [13] proposed a system that can generate 3D models from single-view con-
tours. A common drawback of these methods is that they require tedious specification
of the inputs to produce the desired results.

2.3 Pseudo 3D Modeling System

Other researches focus on producing pseudo 3D models rather than full 3D models.
Rivers et al. [14] proposed an approach which using 2D input to generate 2.5D models
which can be rotated in 3D. Instead of generating a 3D polygonal mesh, they generate a
2.5D cartoon, which naturally supports a stylized drawing style. However, the system
demands artists to draw different views (at least three), and some effects we take for
granted with a 3D model, such as lighting and collision detection, are not natively
supported. TexToons [15] is a system that uses depth layering to enhance 3D-like
effects to texture-mapped hand-drawn cartoons, where the overall appearance feels
synthetic due to the lack of full 3D details. Sýkora et al. [9] presented a system to
produce bas-relief meshes. The approach preserved the look-and-feel of the two-
dimensional domain and delivered a similar look compared with a full three-
dimensional model. However, the meshes created by the system cannot be rotated due
to their bas-relief topology. When rendered with a perspective camera or viewed from
different angles, their system may cause some artifacts because the meshes are not full
3D models.

In this paper, we introduce a system for 3D modeling and deformation from 2D
cartoon images. Compared with sketch-based systems, our system does not require the
user to model from different views. When provided a cartoon image, our system can
segment it into several regions automatically. We design a few user interface elements
to help users refine the result. Inspired by the inflation method in Ink-and-Ray [9], our
system employs a new approach based on solving Poisson equations to generate full
3D models, which is free from the limitations of spherical topology in prior works. We
also propose a method to generate whole textures for both sides of the models to deliver
colorful appearance, which is unsupported in the above systems. The user can add point
handles to deform models to achieve desired poses. The results have shown that our
method can take advantage of the original 2D images as much as possible, while
requires a little user input.

An Interactive 2D-to-3D Cartoon Modeling System 195



3 User Interface

Our interface is shown in Fig. 1. The interface includes three parts: the leftmost palette,
which contains all the tools supported by our system, a window displaying the user
inputs, and a window displaying the generated 3D models. The user starts by selecting
a cartoon image and then performs several operations to generate models. The process
can be divided into five steps:

• Segmentation. After the user selects a cartoon image, our system first extracts the
regions from the image. Each area enclosed by dark edges forms a region. The
result is the initial segmentation and the user can perform some optional operations
to correct the result, such as background selection, merging and splitting regions.
After the user has done with these segmented regions, our system will grow these
regions to eliminate edge pixels and then find contours for them.

• Boundary operations. Region boundaries are then extracted from the segmentation
result. The user can select a boundary and modify it optionally, such as filling holes
and specifying flat boundaries.

• Mesh generation. Different 3D models are generated based on these boundaries and
their types. Our system supports three kinds of meshes: inflated meshes, concave
meshes and half inflated meshes. Figure 2 shows an example of generating three
kinds of meshes based on the same boundary.

• Texture operations. Our system can synthesize textures for the generated meshes
automatically. The original paintings are used as textures of front faces directly and
the back textures are synthesized based on the front textures. Our system uses a
heuristic rule that the farther an area is away from the region boundary, the more
likely this area should not be reused in the back texture. The user can use tools to
modify the results to decide whether or not to reuse an area in the back texture.

• Shape deformation. By default, the centers of generated meshes are all located at the
same depth where z = 0. The relative depth order may be undesired. The user can

Fig. 1. The user interface of our system.

196 L. Feng et al.



add some point handles on the mesh, and deform the meshes in order to get a
satisfactory depth order. The deform operations supported by our system include
translation, rotation and scaling. We find that this tool gives a chance for the user to
obtain more imaginative 3D models.

4 Implementation

In this section, we will describe more details about the above steps.

4.1 Segmentation

Given a cartoon image as input, our system first extracts regions from the image
automatically. Our segmentation uses the curve structure extraction method in [16].
The method first calculates curve points by applying non-maximal suppress on sec-
ondary derivative of cartoon images, and then links them together to form structure
curves. For many cartoon images, this method can extract usable outlines immediately.
However, when the input images contain noises, the result is not as neat as desired. To
detect final outlines from the initial result, we employ an adaptive algorithm [17] on the
initial result. Our system then performs a seed fill algorithm to find enclosed regions.

4.2 Mesh Generation

Our system will find boundaries for each region. These boundaries are used to generate
meshes according to their types. We first apply conforming constrained Delaunay
triangulation [18] to each boundary, obtaining a discrete region ω. The triangulation
uses the Triangle package [19]. We then use the inflation algorithm in [9]. The
algorithm takes advantage of solving a Poisson equation:

Fig. 2. Three kinds of meshes supported by our system. The left image shows the input
boundary. Our system can generate three kinds of meshes based on this boundary. (a) the inflated
mesh. (b) the concave mesh. (c) the half inflated mesh.

An Interactive 2D-to-3D Cartoon Modeling System 197



�r2f ðxÞ ¼ c; 8x 2 w ð1Þ

subject to:

f ðxÞ ¼ 0;8x 2 BD ð2Þ

@f ðxÞ
@n

¼ 0; 8x 2 BN ð3Þ

The function f ðxÞ corresponds to the inflated heights of the region and c is a
positive number specifying how much the region is inflated. The equation should
subject to two types of boundary constraints, Dirichlet or Neumann boundary con-
straints. By default, all of the boundary vertices are subject to Dirichlet boundary
constraints. The resulting f ðxÞ produces a parabolic-like cross-section. Our system then
uses a function f 0ðxÞ ¼ ffiffiffiffiffiffiffiffi

f ðxÞp

to convert it into a more smooth mesh. These heights are
used by both front and back faces. For regions that need to remain flat, Neumann
boundary conditions can be used. This inflation method may produce sharpness along
the meshes’ cross-sections. Local Laplacian smoothing methods [20, 21] are then
employed to smooth the edges.

Three kinds of meshes are supported by our system. For inflated meshes, we just
use the inversed heights for back faces and glue them to front faces with a small shift.
For concave meshes, the heights of front faces are scaled by a scalar smaller than one
and then inversed to produce a concave effect. In the case of half inflated meshes, the
heights of front faces are simply set to zero. This method is simple but delivers
satisfactory results in our experiments.

4.3 Texturing

Our system will generate both front and back textures for each region. We use the [x, y]
coordinates as texture coordinates for front faces and attach the original image to them
directly. For back faces, the system should generate proper back textures. The essential
idea is that areas that are far away from the boundary of the region are more likely not
reused on the back texture. Given a region, our system first selects a main color which
contributes the most along the boundary. This main color is used to initialize the back
textures. Our system then applies marker-based segmentation using watershed algo-
rithm to separate areas in the original texture. The algorithm begins with the bina-
rization of the input image. Then we apply the distance transform on the binary image.
We threshold this distance image and perform some morphology operations to extract
areas from the image. For each area we create a seed for the watershed algorithm by
extracting its contour. Then we apply the watershed algorithm and combine adjacent
areas. In order to compare their distance from the region boundary, we apply the
distance transform on the whole region and use this distance map to calculate the
nearest path from each area to the boundary. If the distance is smaller than a threshold
(we use 5 in our implementation), then we suppose this area should be reused in the
back texture.

198 L. Feng et al.



The user can use tools provided by our system to modify the results (whether or not
to reuse an area). If an area is not reused according to a user input, the pixels of this
area will be filled with the main color selected at the beginning.

4.4 Shape Deformation

Shape deformations can help the user to get correct depth orders between different
regions and to deform the generated models to obtain desired poses. The user can first
add some point handles on the region in the 2D cartoon image. Then our system will
calculate skin weights for each point handle and assign to each vertex a set of skin
weights for each handle. The weights are computed using bounded biharmonic weights
[22]. The method defines the weights wj as minimizers of the Laplacian energy subject
to constrains that enforce interpolation of the handles and other desirable properties,
such as smoothness, shape-awareness locality and sparsity. When the user drags the
point handle, the system then uses the linear blend skinning function [23] to deform the
model.

4.5 Rendering

Every mesh generated by our system is attached with a texture, which is the combi-
nation of two textures, one for front faces and one for back faces. In order to render
them on the mesh correctly, we assign each vertex a texture coordinate [u, v]. For front
faces, these coordinates are simply the [x, y] coordinate of this vertex. For back faces,
the v component in [u, v] is still the value of y, but the u component is the sum of x and
1. So any texture coordinate larger than 1 indicates this vertex belongs to some back
face. When rendering the mesh, the system will use this information to decide which
part of the texture to sample.

Once the mesh is generated, our system uses a tone-based shading [24] to deliver a
stylized look. More complicated lighting effects are also supported. When rendering the
scenes shown in Fig. 3, we employ the method in [25] to add stylized specular effects
on the models.

5 Results

We tested our system on a 2.6 GHz Intel Core i7 under OS X 10.9.5, running at
interactive rates. To demonstrate the versatility of our method, we selected a set of
cartoon images with different types, including characters, fruits, animals, plants and so
on. These are shown in Figs. 3 and 6.

In Fig. 3, we show two sample scenes, in which all of these models (except the
walls) were created from cartoon images using our system. Most of them took less than
5 min to create, and some just took a few seconds, such as the oranges and mangoes. In
Fig. 6, we illustrate some examples with different poses and structural complexity. In
each example, we show the original cartoon image, the result of the segmentation

An Interactive 2D-to-3D Cartoon Modeling System 199



phase, the annotations including region operations and point handles made by the user,
the front view and side view of the generated and deformed 3D models.

6 Evaluation

The results have shown that our system can handle a variety of cartoon images. We
compared our system with the prior works. Sketch-based modeling systems [3–8] can
only handle tubular organic shape (limited to spherical topology). Surfaces with edges
or concave silhouettes (see the grasses and trees in Fig. 3) and cycles of connection
curves (such as the letter “B”) cannot be created by these systems. Our system is free
from these limitations and can create models with almost the same silhouettes in the
original images. Moreover, flat surfaces (see the mushrooms in Fig. 3, the sleeves of
the Boy and Bear in Fig. 6) and concave meshes (see the grasses in Fig. 3, the ears of
the Boy and Bear in Fig. 6) can also be created easily.

One of the main advantages of our system is that we don’t require the user to rotate
from different view during modeling. Because our system can segment the input
images by their silhouettes accurately and automatically, the user doesn’t need to
sketch a lot like other sketch-based systems do. We created two models similar to those
in [7]. With their system, one required 20 min and the other required 13 min to create,
which only took 8 min and 5 min with our system.

7 User Study

To test the usability of our system, we performed an informal user study consisting of
fifteen children whose average age was twelve. These children were divided into three
groups, each using a different system among our system, RigMesh [8] and the system
with structured annotations [7]. After a 20 min training of each system, the children

Fig. 3. Sample scenes created using our system. Most of the models took less than 5 min to
create, and some just took a few seconds. Top: the scenes constructed by these models. Below:
the original cartoon images used in the scene.

200 L. Feng et al.



were allowed to create their own models. We also encouraged them to draw their own
cartoon images with color pens and to use these paintings as the inputs of each system.
Figure 4 shows a young girl was drawing a yellow star and the resulted model she
created with our system which took about 3 min. We then collected their feedback of
each system. Many children noted that the system with structured annotations [7] was
not easy to produce desired models. They had to deform from certain basic primitives
and the annotations provided by the system were somewhat complicated. The screen
was easily messed up with these primitives and annotations. Some children using
RigMesh struggled with creating models with holes and complained the system cannot
create models with the exactly same silhouettes they sketched. In contrast, children
using our system gave positive feedback of the simple and convenient annotations
provided by our system. They remarked that the automatic segmentation and inflation
was very helpful. Many children, including those using the other two systems, were
excited with the textured models created by our system and would like to have this in
the other two systems.

8 Conclusions and Future Work

We have implemented an interface for 3D modeling from cartoon images to simplify
the modeling process, making it convenient for novice users to obtain their own 3D
models. Compared with the prior sketch-based systems, our system can handle a large
range of models, such as cycles of connection curves, surfaces with edges and flat
surfaces. The models generated by our system also contain texture information, which
can deliver a similar look to the original cartoon images as much as possible. The
deformation employed by our system gives a chance for the user to get a better pose for
their models. Our results show that our system makes it possible to create personalized
3D contents from cartoon images effectively.

Our system can be applied to many related areas, such as education and augmented
reality. In applications such as Magicbook [26], children can see three-dimensional
virtual models appearing out of the book pages through a handled augmented reality
display. However, those applications demand developers to prepare models in advance,
which is time-consuming. Instead, our system focuses on modeling from 2D cartoon
images rapidly, and enables children to author their own models, giving full play to
their creativity. We build our demo based on Vuforia SDK [27]. Figure 5 demonstrates
such an ideal Augmented Reality example using our system. The child can first draw a

Fig. 4. A young girl was drawing a yellow star and the model she created with our system
(Color figure online).

An Interactive 2D-to-3D Cartoon Modeling System 201



cartoon image, and then take a photo of it (Fig. 5a). The picture is provided as the input
of our system. Next, our system generates the desired model based on a few user
inputs. The model is then added to the database. Finally, children can see their own
three-dimensional virtual models standing on the cartoon images through a display
(Fig. 5b). The time that the entire process takes is just a few minutes. The resulted 3D
models can also be printed by 3D printers (Fig. 5c).

Fig. 5. Applications. (a) the picture of a hand-drawn cartoon image. (b) the scenario in
augmented reality. (c) the substance printed by a 3D printer.

Fig. 6. More complex models created using our system. (a) the original cartoon images. (b) the
results of the segmentation phase. (c) the annotations including region operations and point
handles made by the user (gray: region boundaries, red: Neumann boundary conditions, blue:
point handles). (d) the front views. (e) the side views (Color figure online).

202 L. Feng et al.



Our system still has its limitations. First, the user needs to modify region bound-
aries to model occluded parts. In the future, we plan to employ more intelligent
methods [28, 29] to complete these regions automatically. Second, the textures of
occluded areas are simply filled with the main color selected by our system. However,
in some cases the method does cause some artifacts. This drawback can be fixed by
using more advanced texture analysis methods such as [30].

Acknowledgments. We are grateful to all the volunteers who participated in our user studies.
This work is supported in part by the National Natural Science Foundation of China (nos.
61173105 and 61373085) and the National High Technology Research and Development Pro-
gram of China (no. 2015AA016404).

References

1. AUTODESK Maya (2015). http://www.autodesk.com/products/maya/overview
2. AUTODESK 3ds Max (2015). http://www.autodesk.com.cn/products/3ds-max/overview
3. Igarashi, T., Matsuoka, S., Tanaka, H.: Teddy: a sketching interface for 3D freeform design.

In: ACM SIGGRAPH 2007 Courses, p. 21. ACM (2007)
4. Schmidt, R., Wyvill, B., Sousa, M.C., et al.: Shapeshop: sketch-based solid modeling with

blobtrees. In: ACM SIGGRAPH 2007 Courses, p. 43. ACM (2007)
5. Nealen, A., Igarashi, T., Sorkine, O., et al.: FiberMesh: designing freeform surfaces with 3D

curves. ACM Trans. Graph. (TOG) 26(3), 41 (2007). ACM
6. Cordier, F., Seo, H., Park, J., et al.: Sketching of mirror-symmetric shapes. IEEE Trans. Vis.

Comput. Graph. 17(11), 1650–1662 (2011)
7. Gingold, Y., Igarashi, T., Zorin, D.: Structured annotations for 2D-to-3D modeling. ACM

Trans. Graph. (TOG) 28(5), 148 (2009). ACM
8. Borosn, P., Jin, M., DeCarlo, D., et al.: Rigmesh: automatic rigging for part-based shape

modeling and deformation. ACM Trans. Graph. (TOG) 31(6), 198 (2012)
9. Sýkora, D., Kavan, L., Čadík, M., et al.: Ink-and-ray: bas-relief meshes for adding global

illumination effects to hand-drawn characters. ACM Trans. Graph. (TOG) 33(2), 16 (2014)
10. Olsen, L., Samavati, F., Sousa, M.C, et al.: A taxonomy of modeling techniques using

sketch-based interfaces. In: Eurographics State of the Art Report (2008)
11. Schmidt, R., Isenberg, T., Jepp, P., et al.: Sketching, scaffolding, and inking: a visual history

for interactive 3D modeling. In: Proceedings of the 5th International Symposium on
Non-photorealistic Animation and Rendering. ACM, pp. 23–32 (2007)

12. Olsen, L., Samavati, F.F., Jorge, J.A.: NaturaSketch: Modeling from images and natural
sketches. IEEE Comput. Graph. Appl. 31(6), 24–34 (2011)

13. Karpenko, O.A., Hughes, J.F.: SmoothSketch: 3D free-form shapes from complex sketches.
ACM Trans. Graph. (TOG) 25(3), 589–598 (2006). ACM

14. Rivers, A., Igarashi, T., Durand, F.: 2.5 D cartoon models. ACM Trans. Graph. (TOG)
29(4), 59 (2010). ACM

15. Sýkora, D., Ben-Chen, M., Čadík, M., et al.: TexToons: practical texture mapping for
hand-drawn cartoon animations. In: Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Non-photorealistic Animation and Rendering, pp. 75–84. ACM (2011)

16. Cheng, M.M.: Curve structure extraction for cartoon images. In: Proceedings of the 5th Joint
Conference on Harmonious Human Machine Environment, pp. 13–25 (2009)

An Interactive 2D-to-3D Cartoon Modeling System 203

http://www.autodesk.com/products/maya/overview
http://www.autodesk.com.cn/products/3ds-max/overview


17. Sýkora, D., Buriánek, J., Žára, J.: Colorization of black-and-white cartoons. Image Vis.
Comput. 23(9), 767–782 (2005)

18. Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation. Comput.
Geom. 22(1), 21–74 (2002)

19. Shewchuk, J.R.: Triangle: engineering a 2D quality mesh generator and Delaunay
triangulator. In: Lin, M.C., Manocha, D. (eds.) Applied Computational Geometry Towards
Geometric Engineering. LNCS, vol. 1148, pp. 203–222. Springer, Heidelberg (1996)

20. Field, D.A.: Laplacian smoothing and Delaunay triangulations. Commun. Appl. Numer.
Methods 4(6), 709–712 (1988)

21. Vollmer, J., Mencl, R., Mueller, H.: Improved laplacian smoothing of noisy surface meshes.
Comput. Graph. Forum 18(3), 131–138 (1999). Blackwell Publishers Ltd.

22. Jacobson, A., Baran, I., Popovic, J., et al.: Bounded biharmonic weights for real-time
deformation. ACM Trans. Graph. 30(4), 78 (2011)

23. Magnenat-Thalmann, N., Laperrire, R., Thalmann, D.: Joint-dependent local deformations
for hand animation and object grasping. In: Proceedings on Graphics Interface 1988 (1988)

24. Gooch, A., Gooch, B., Shirley, P., et al.: A non-photorealistic lighting model for automatic
technical illustration. In: Proceedings of the 25th Annual Conference on Computer Graphics
and Interactive Techniques, pp. 447–452. ACM (1998)

25. Anjyo, K., Hiramitsu, K.: Stylized highlights for cartoon rendering and animation. IEEE
Comput. Graph. Appl. 23(4), 54–61 (2003)

26. Billinghurst, M., Kato, H., Poupyrev, I.: MagicBook: transitioning between reality and
virtuality. In: CHI 2001, Extended Abstracts on Human Factors in Computing Systems,
pp. 25–26. ACM (2001)

27. Developer, V.: SDK, Unity extension Vuforia–2.8 (2014)
28. Geiger, D., Pao, H., Rubin, N.: Salient and multiple illusory surfaces. In: Proceedings of the

1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pp. 118–124. IEEE (1998)

29. Orzan, A., Bousseau, A., Barla, P., et al.: Diffusion curves: a vector representation for
smooth-shaded images. Commun. ACM 56(7), 101–108 (2013)

30. Elad, M., Starck, J.L., Querre, P., et al.: Simultaneous cartoon and texture image inpainting
using morphological component analysis (MCA). Appl. Comput. Harmonic Anal. 19(3),
340–358 (2005)

204 L. Feng et al.


	An Interactive 2D-to-3D Cartoon Modeling System
	Abstract
	1 Introduction
	2 Related Work
	2.1 Sketch-Based Modeling System
	2.2 Single-View Modeling System
	2.3 Pseudo 3D Modeling System

	3 User Interface
	4 Implementation
	4.1 Segmentation
	4.2 Mesh Generation
	4.3 Texturing
	4.4 Shape Deformation
	4.5 Rendering

	5 Results
	6 Evaluation
	7 User Study
	8 Conclusions and Future Work
	Acknowledgments
	References


