
MagicToon: A 2D-to-3D Creative Cartoon Modeling System
with Mobile AR

Lele Feng* Xubo Yang† Shuangjiu Xiao‡

Digital ART Lab, School of Software
Shanghai Jiao Tong University, China

ABSTRACT

We present MagicToon, an interactive modeling system with mo-
bile augmented reality (AR) that allows children to build 3D car-
toon scenes creatively from their own 2D cartoon drawings on pa-
per. Our system consists of two major components: an automatic
2D-to-3D cartoon model creator and an interactive model editor to
construct more complicated AR scenes. The model creator can gen-
erate textured 3D cartoon models according to 2D drawings auto-
matically and overlay them on the real world, bringing life to flat
cartoon drawings. With our interactive model editor, the user can
perform several optional operations on 3D models such as copying
and animating in AR context through a touchscreen of a handheld
device. The user can also author more complicated AR scenes by
placing multiple registered drawings simultaneously. The results of
our user study have shown that our system is easier to use compared
with traditional sketch-based modeling systems and can give more
play to children’s innovations compared with AR coloring books.

Keywords: 2D-to-3D, modeling, augmented reality, mobile de-
vices, user interface, coloring.

Index Terms: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems; I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

Figure 1: An AR scene created by our system.

*e-mail: lelefeng1992@gmail.com
†e-mail: yangxubo@sjtu.edu.cn (corresponding author)
‡e-mail: xsjiu99@cs.sjtu.edu.cn

1 INTRODUCTION

Cartoon painting with pens and paper is a natural activity and an
important experience for children to practice and express their cre-
ative skills. In recent years, augmented reality (AR) even enhances
the experience by providing a bridge between real-world colored
drawings and digital cartoon characters. There are several AR col-
oring book systems either from academic or industry, such as co-
lAR [7], Crayola Color Alive [8], Disney’s Color and Play [11] and
Chromville [6]. These systems can recognize the colors users paint
on paper and use similar colors on 3D models in AR context. How-
ever, the 3D elements used in these systems are all manually mod-
eled in advance, and the 2D drawings are also ready-made specific
line drawings. This kind of systems limits the creativity of chil-
dren because children cannot create their own personalized cartoon
drawings and 3D models within the system.

For novice users such as children, it is not easy to build 3D mod-
els using professional modeling systems. Traditional 3D model-
ing tools require users to learn a complicated interface, which are
daunting challenges for children. In order to ease such a situation,
sketch-based modeling systems such as Teddy [19] and its follow-
up works [25, 21, 14, 5] proposed approaches to create 3D mod-
els from 2D strokes. These works indeed provide more opportuni-
ties for children to create personalized 3D content but have some
common limitations. First, most of these systems require users to
sketch from a large number of different views, making it difficult
for children to accomplish their tasks. Second, all of these systems
need children to sketch in front of digital monitors or at most on
tablets, separating them from real-world activities and losing phys-
ical enjoyment they have experienced from traditional activities like
drawing and coloring. In addition, it is not easy for children to get
satisfactory sketches just through mouse dragging without the help
of common tools like erasers and rulers.

In this paper, we present MagicToon, an AR system on mobile
devices that allows children to create three-dimensional textured
models directly from their own two-dimensional cartoon drawings
and further easily author complicated AR scenes. There are two
major design goals for MagicToon:

• Design a system on mobile devices that can generate 3D tex-
tured cartoon models by fully leveraging children’s drawing
skills in the real world and require minimum inputs.

• Provide an approach for children to author their own creative
cartoon scenes in AR environments easily through some sim-
ple multi-finger gestures.

Oviatt [23] summarized that new interfaces for education should
be designed to minimize users’ cognitive load by modeling their
pre-existing behavior, so we aim to maintain children’s entertain-
ment and creativity of drawing and coloring on real paper as much
as possible, keeping children more attuned to the real world around
them. In addition, Hürst et al. [18] concluded that touchscreen op-
erations outperformed freehand movements in creating and editing
3D models in AR applications on mobile devices. Hence we avoid

complex operations in virtual 3D spaces and employ simple touch-
screen gestures.

The main contributions of our work are:

• Present an automatic 2D-to-3D model creator on mobile de-
vices that can directly convert personalized 2D drawings into
3D textured models with AR enabled, bringing life to flat car-
toon drawings.

• Propose a creative modeling pipeline including an automatic
model creator and an interactive model editor, enabling chil-
dren to construct personalized AR scenes (Figure 1) from
scratch.

• Conduct an user study showing the comparison results among
three cartoon systems. The results have shown that our sys-
tem is easier to use compared with traditional sketch-based
systems and can give more play to children’s innovations than
AR coloring books.

2 RELATED WORK

2.1 AR Books
AR has shown great potential to enhance entertainment and educa-
tion for children. Zünd et al. [29] proposed the concept of Aug-
mented Creativity as employing AR on modern mobile devices to
enhance real-world education, opening new interaction possibili-
ties. MagicBook [4] is one of the earliest systems that combined
virtual digital content with a book in real world. In MagicBook,
children can see three-dimensional virtual models appearing out of
the book pages through a handheld augmented reality display. Clark
and Dunser [7] presented a new type of interactive AR book expe-
rience. In their prototype, users can color the pages of a book and
the system automatically maps the colored results to virtual pop-up
scenes and 3D models. There is also a commercial product derived
from their work called QuiverVision1. Since then, many other col-
oring book products, such as Crayola Color Alive [8], Chromville
[6] and Disney’s Color and Play [11], have shown immense poten-
tial in this field. Magnenat et al. [20] proposed a method that can
detect and track the drawing process alive, enhancing the overall
drawing experience further. There is one main limitation among
these works that the 3D content cannot be created by users entirely.
Although users can color 3D content, they always need to prepare
printed line arts provided by the manufacturers. The systems do not
enable them to create their own virtual character models.

2.2 Sketch-based Modeling System
Sketch-based 3D modeling has been a popular research field, which
simplifies the traditional modeling pipeline making it much more
easier for children to create 3D models. Systems such as Teddy
[19] and its descendants FiberMesh [21] and ShapeShop [25] ap-
proached the problem by asking users to sketch from many different
views. RigMesh [5] proposed an approach to modeling and rigging
in contrast to the traditional sequence. The range of models that
these systems can handle is limited, because their modeling meth-
ods are limited to spherical topology. Another problem of these
systems is that they require users to sketch from a large number of
different views. Schmidt et al. [24] found that novice users such as
young children were unable to accomplish their tasks and became
frustrated very easily with the change of views.

To address the problems in multi-view sketch-based modeling
systems, several single-view sketch-based modeling systems are
proposed. In Gingold et al. [14], structured annotations were intro-
duced for 2D-to-3D modeling. In their implementation, the user can

1http://quivervision.com/

add deformable primitives along with some structured and seman-
tic annotations. However, adding annotations from a single view
demands decent 3D perspective understandings, which are difficult
for children. A similar work using annotations is Naturasketch [22].
The system presented a new modeling method based on distance
transforming which is free from the limitation of spherical topol-
ogy in prior works. A common problem of these methods is that
they require tedious inputs to produce personalized models, which
is time-consuming for children.

2.3 Authoring Models in AR
Several applications have been developed to support authoring 3D
models in AR. ARpm [12] was a prototype system which allowed
the use of complex 3D polygonal modeling tools provided by 3D
Studio Max to bring models into the user’s world. Air-Modeling
[1] provided a CAD interface to create virtual conceptual prod-
ucts by hand gestures in AR environments. The modeling meth-
ods in those systems were the same as the traditional methods per
se, which were difficult for children to learn. Bergig et al. [3]
presented a framework for authoring 3D scenes for AR based on
hand sketching and implemented an application that constructed
AR scenes of mechanical systems from 2D sketches. Their system
was limited to simple solid models with a limited set of properties,
which was more suitable for specific systems such as mechanical
systems. Hagbi et al. [15] described a sketch-based AR racing
game called Sketchaser with In-Place Augmented Reality Sketch-
ing experiences. Players can draw on real paper and the system
can author virtual game elements according to the sketched ele-
ments. A similar work can be found in [9], where an interactive
storytelling system was presented. The user can draw a set of pre-
defined sketches on a sheet of paper. If the system recognizes a
sketch, it will render the virtual world objects and characters super-
imposed over the real world. A common limitation of these systems
is that all of the authored models require to be created in advance,
which leaves no space for users to author their personalized content.
Hürst et al. [18] evaluated the feasibility of free-hand interaction
using mobile devices in order to create and edit 3D models in AR
applications. Based on their experiments, they concluded that free-
hand drawing was too difficult for most users and it seemed obvious
that touchscreen operations outperformed freehand movements. In
contrast to existing works, our system provides a novel modeling
workflow that simplifies the modeling operations in AR by auto-
matically generating 3D models from 2D drawings and employs
simple touchscreen gestures to edit models and compose scenes.

3 WORKFLOW

To illustrate our personalized modeling pipeline in AR environ-
ments, an example workflow using MagicToon is described as fol-
lows. The user first sketches and colors a cartoon drawing on a
blank paper card, and then uses MagicToon to capture an image
of the drawing (Figure 2a). The automatic model creator of our
system first splits the cartoon image into several regions based on
dark edges (Section 4.1). For each region, a 3D inflated mesh is
generated and the original cartoon texture is attached to it with styl-
ized cartoon shading (Section 4.2). The system then registers the
textured model to the cartoon drawing via a mobile AR interface,
so that the user can see the virtual model overlaying on the real
world (Figure 2b). The user can perform several intuitive opera-
tions on the 3D personalized model through our interactive model
editor in AR environments (Figure 2c, Section 4.3). The system
supports affine transformations like rotation, translation and scal-
ing by detecting multi-finger gestures. The user can also copy the
model by double tapping on the virtual floor. Animation can be
added to a model just after the user clicks a certain button. The
system will produce a simple animation by interpolating positions,
rotations and scales between two end points by default. The user

Figure 2: (a) The input cartoon drawing. (b) The model creator generates a 3D cartoon model based on the input. (c) The user performs affine
transformations and copy operations on the model through our interactive model editor in AR environments. (d) The user constructs a more
complicated AR scene by placing several registered cartoon drawings simultaneously.

is also allowed to rig the cartoon model with character animations
with a few inputs (Section 4.4). The user can easily compose a more
complicated AR scene by placing multiple registered drawings si-
multaneously (Figure 2d).

4 IMPLEMENTATION

In this section, we will describe more details about the implemen-
tation.

4.1 Segmentation
Given a picture of a cartoon drawing as input, our system first scales
the picture with a fixed height of 600 pixels. The system then ex-
tracts several regions from the picture automatically. This is done
by extracting outline pixels from the drawing and then using a fill-
ing algorithm to find region maps.

In cartoon drawings, outline pixels are those who are darker than
their neighboring pixels. As the saturation channel contains the
most sensitive visual content, we first convert the RGB image to
HSV color space (Figure 3a), and apply an adaptive threshold al-
gorithm only on the S channel (Figure 3b). We then remove out-
liers whose saturation values exceed a threshold value. Morphol-
ogy close and open steps are followed to eliminate extra noises.
However, there are still some dark pixels along the cross-sections,
which may be very noticeable in the final models. To address this
problem, we dilate the outline map by using a small kernel (the size
is 3 by default), which makes the outline map a little thicker.

Once we have the outline map, a flood filling algorithm is ap-
plied to find enclosed region maps. The system ignores small re-
gions whose areas are smaller than a threshold (50 in our imple-
mentation), such as some regions of the Elephant’s toes. Those
small region maps are then added to the final outline map (Figure
3c). For those regions whose areas are larger than the threshold, we
then apply a morphological close operation. The size of the kernel
is obtained by evaluating the average outline width of this cartoon
image. In our implementation, the average outline width is equal to
the number of iterations of a thinning algorithm [28] applied to the
outline map in most cases. However, we will interrupt the algorithm
if the number is beyond some threshold (which is 20 in our imple-
mentation) when some parts of the outline are too thick and return
this threshold value in consideration of performance. This step is
essential to eliminate internal outlines within the region maps. Fig-
ure 4 shows such an example. The final region maps of the Elephant
image is shown in Figure 3d. The outline removal steps introduce
small gaps between adjacent region maps, so we enlarge each gen-
erated mesh a little by a factor of 1.08 to decrease the gaps between
meshes.

The segmented region maps will be also used as textures for front
and back faces in the further rendering. The resulted cartoon model

Figure 3: (a) The saturation channel of the input cartoon drawing. (b)
The result after applying the adaptive threshold algorithm. (c) The
final outline map. (d) The region maps. Different colors denote dif-
ferent regions. (e) The region maps of the regions being merged. (f)
Combine (e) with the outline map to obtain a temporary region map.
(g) The result after applying the morphological erosion operation. (h)
The new region map.

Figure 4: Apply a morphological close operation to eliminate internal
outlines. The left shows there are some internal outlines within the
leaf. (a) The region maps with no morphological close operation and
the resulted model. (b) The region maps with a morphological close
operation and the resulted model.

of the Elephant image is shown in the first image of Figure 6a.
When the user performs a merging operation (Section 4.3) to merge
over-segmented regions as shown in Figure 6a, we first combine
their region maps (Figure 3e) with the outline map into a new region
map (Figure 3f), and then apply a morphological erosion operation
to remove outline pixels (Figure 3g). The size of the kernel is equal
to the average width value we mentioned above. Finally a new mesh
will be generated from this new region map (Figure 3h).

4.2 Mesh Generation
The system then finds boundaries for each region map. We only
generate meshes for the extreme outer boundaries to avoid too many
holes and tiny parts, so the ear of the Elephant in Figure 3 will not
result in an internal hole of the body.

We first apply conforming constrained Delaunay triangulation
[26] to each boundary, obtaining a region with many discrete ver-
tices. In order to improve the performance on mobile devices, we
use different maximum area constraints based on the region area
when triangulating the region. The smaller a region is, the more tri-
angles will be generated. We then use the same inflation method as
described in NaturaSketch [22]. For each region, we first calculate
a distance map to encode the distance of every pixel to the nearest
black pixel, as shown in Figure 5a. The distance value indicates
how far the pixel should be inflated from the plane. The shape will
be too sharp if we use distance values to inflate the region directly
due to the linearity of the distance map (Figure 5b). In order to get
a smooth result, we use a circular mapping function as below to
transform distance values to the real height values (Figure 5c):

H(x) =
√

Dmax ∗Dmax−a∗a (1)

a = Dmax−D(x) (2)

where D(x) is the distance value of the current vertex and Dmax
is the maximum distance value within this region. This method may
produce sharpness along the cross sections, so we employ the local
Laplacian smoothing method [27] to smooth the whole mesh. Once
the mesh is generated, the original cartoon drawing will be used as
both front and back textures for each region. Our system then uses
a tone-based shading to deliver a stylized look (Figure 5d).

4.3 Interaction
The system then registers the generated 3D models to AR environ-
ments. In our implementation, we use Vuforia SDK [10] to detect
and track image targets. The goal of our system is not only to gener-
ate 3D models but also to provide an interface for children to create
their own AR scenes. As a result, our system supports several oper-
ations in AR environments to edit more complicated scenes. After

the user touches one model on the screen, our interactive model
editor will be popped up on the left of the screen and the system
enters the editing mode. A virtual grid plane will be placed at the
same location of the virtual image target. The user can click one of
the six buttons as shown in Figure 6. By default, the first button is
selected, which means the system is in the idle mode. If the user
clicks the last button, the system will exit the editing mode and ren-
der the scene normally. There are four main operations supported
by our system:

• Merge. Areas enclosed by dark pixels will be treated as re-
gions. Some decorative elements may be mistaken as individ-
ual small regions, which make the outer region divided into
several over-segmented regions. In Figure 6a, we show such
an example to merge over-segmented regions of the Elephant
model. The user can perform a dragging gesture to move
across those regions and the system will merge them auto-
matically.

• Affine transformation. As shown in Figure 6b, the user can
drag the virtual coordinate axis to translate a cartoon model.
The system also detects pinch gestures to scale the model.
Rotations will be applied to the model once the system detects
a dragging gesture whose start point is touched on the model.

• Copy. The user may want to make several copies of a certain
model. As shown in Figure 6c, a forest can be created by
making a few copies of a tree model. The user can double
tap somewhere on the virtual grid plane and the system will
instantiate a copy in that location. The other three operations
can also be performed on each individual model copy to make
them different from each other.

• Animation. Our system supports simple animations by in-
terpolating positions, rotations and scales between two end
points by default, as well as advanced character animations.
Once the user clicks the animation button, a dummy virtual
model (the end point) will be placed in the scene with a cer-
tain offset to the selected model (the start point). The user
can perform affine transformations on this dummy model as
we describe above to change the position, rotation and scale
of this end point. Figure 6d shows an example of animating
a floating cloud. The user can also author character anima-
tions to the selected model by placing several skeleton joints
on desired positions on the model and the system will auto-
matically rig it. We will describe more details about character
animations in Section 4.4.

More complicated scenes can be composed by placing multiple
registered cartoon drawings within the camera’s field of view. The
system supports up to five cartoon drawings at the same time, in
consideration of the accuracy and performance of the tracking al-
gorithm. The AR environments provide a novel approach for chil-
dren to edit virtual scenes conveniently and creatively. The relative
positions and rotations of different cartoon models can be easily
changed by just moving the drawing cards back and forth in the
real world.

4.4 Character Animation
Our system also supports complicated character animations. In or-
der to rig a cartoon model, the system needs to calculate two kinds
of information: skeleton embedding and skinning. Skeleton em-
bedding determines the positions of each bone and skinning needs
to find bone weights for each vertex.

For skeleton embedding, we employ a method that partly de-
pends on the user inputs. Our system currently only supports the hu-
man skeleton and motions. The human skeleton we choose consists

Figure 5: (a) The distance map. (b) The generated model after using linear distance values to inflate the region directly. (c) The smooth model
after applying a circular mapping function. (d) The textured 3D model.

Figure 6: Main operations supported by our system. (a) The Elephant example has some over-segmented regions. The user drags a finger
through those regions to merge them. (b) The user can translate, rotate and scale a model through certain gestures. (c) The user can double
tap on the virtual plane to make a copy of the tree model. (d) The user can edit the end point of an animation through affine transformations.

of 18 joints (17 bones) and the user needs to place 9 particular joints
such as shoulders and feet to the corresponding positions through
the touch screen. The joints can be placed outside the model vol-
ume, such as the feet joints of the Tree in Figure 7a. The system
then calculates the positions of the remaining joints automatically
(Figure 7b and Figure 7c).

For those joints whose positions are not determined by the user,
we define five parameters for each of them: (JJJstart ,JJJend ,r1,r2,DDD).
The position of this joint JJJ can be computed by using the following
formula:

JJJ = JJJstart + r1 · (JJJend − JJJstart)+ r2 · ||JJJend − JJJstart || ·DDD

where JJJstart and JJJend are the two dependent joints; DDD is a vector
that describes the direction of the offset; r1 and r2 are the ratios of
lengths. If the positions JJJstart and JJJend are also not determined, the
algorithm will be executed recursively.

To create a rigged cartoon model, the next step we need to do
is to calculate the bone weights for each vertex (skinning). These
weights define how much each bone transformations affect each
vertex. Our system uses the skinning algorithm proposed in Pinoc-
chio [2]. The algorithm uses the key idea of heat diffusion and the
bone weights can be computed by solving a linear system of equa-
tions. In the original implementation, Pinocchio needs to construct
distance field in 3D space to evaluate the exact distance to the sur-

face from an arbitrary point, and then uses distance field to check
whether a vertex can see a bone when calculating the nearest bone
for this vertex. In our implementation, we decide to remove this
step for two main reasons: first of all, this step is time-consuming,
which takes more than one minute on mobile devices; second, this
check also makes calculating weights of those bones outside the
model volume impossible, because no vertex can see these bones
at all. Although removing this step may introduce some occasional
artifacts, the heat diffusion method gives acceptable results in all of
our experiments and we consider the two benefits mentioned above
much more important in such an interactive system for children.
After removing this step, the skinning algorithm only takes about
one second on our test devices. Figure 8 shows the skinning results
of Figure 7 for the bone marked in green.

Given the skeleton and skinning information as inputs, we then
use the linear blend skinning (LBS) method to animate the cartoon
model with a set of predefined character motions, such as jump and
running as shown in Figure 9.

5 RESULTS

We have implemented MagicToon using the Unity3D game engine2

and Vuforia SDK [10]. MagicToon can run on Android and iOS
platforms.

2http://unity3d.com/

Figure 7: Skeleton embedding. (a) The user places nine particular
joints on the model, such as joints for the head and shoulders. (b)(c)
The system calculates all the positions of the 18 joints based on (a).
Joints can be placed outside the model volume, such as the feet
joints for the Tree model.

Figure 8: Bone weights for the bone marked in green.

In order to get performance statistics of our model creator, we
tested MagicToon on a 1.3GHz iPad Mini 2 to model four exam-
ple cartoon drawings (Figure 10). The drawings were created by
different users: the Cherry (Figure 10a) and the Tree (Figure 10c)
were drawn by one colleague who had no 2D artistic experience, the
Bunny (Figure 10b) was drawn by another colleague with five years
3D modeling experience and the Bear (Figure 10d) was drawn by a
twelve years old child.

Table 1 shows mesh statistics and Table 2 shows timing statistics
of each step for each example. The total time for mesh generation
was about 0.7 second and most of the time was spent on inflation.
Drawings with more regions tended to require more time for infla-
tion, since that more computation was required to calculate distance
maps for these regions. In general, the performance of our model

Table 1: Mesh statistics for examples
Cherry Bunny Tree Bear

Regions 7 8 11 11
Vertices 3600 3036 2700 4594
Triangles 21516 18096 16056 27432

Figure 9: Character animations of the Bear model. The left shows a
jump animation and the right shows a running animation.

Figure 10: Example models.

creator is sufficient for the requirements of interactions in Magic-
Toon.

6 USER STUDY

In order to compare our novel MagicToon system with prior sketch-
based modeling systems and AR coloring books, we set up a com-
parative user study. We chose RigMesh [5] as the representative of
traditional sketch-based modeling systems and Chromville [6] as
the representative of AR coloring systems.

6.1 Evaluated Systems
The three evaluated systems were as follows:

• MagicToon: our interactive 2D-to-3D modeling system on
mobile platforms. The user can input a cartoon drawing and
the system will generate a textured 3D model automatically.

Table 2: Timing statistics for examples (ms)
Cherry Bunny Tree Bear

Segmentation 89 95 71 54
Triangulation 51 38 55 61
Inflation 501 512 576 583
Total 641 645 702 698

Figure 11: Children were using our system. (a) A boy drew a sunflower and then used our system to construct a virtual garden. (b) A girl drew a
yellow cat and a red cherry and then used our system to model them.

Figure 12: More results authored by children with our system.

The user can also edit and animate the model in AR context
to construct more complicated cartoon scenes.

• RigMesh: a sketch-based 3D modeling system on Windows
platforms with no AR interface, following the idea of mod-
eling by parts as described in [5]. Users interactively create
3D models part-by-part on screen using personal drawings as
reference.

• Chromville: an augmented reality coloring pages application
on mobile platforms, as shown in [6]. Chromville consists of
a series of coloring template pages that can be downloaded
and printed off ready for coloring. Once children have fin-
ished their drawings, Chromville can be used to recognize the
coloring pages and then show pre-made 3D models textured
with the coloring results.

We note that the three systems are different, but we focus on
comparing them based on their similarities on usages or workflows.

To investigate the influence of modeling process, we compare
MagicToon and RigMesh since they both support 3D modeling
from 2D inputs. They differ in their workflows and interactions
to generate models. MagicToon generates 3D models from 2D car-
toon inputs directly, which can produce stylized models with mini-
mum user inputs. RigMesh requires users to sketch on screen part-
by-part based on 2D inputs to create deformable primitives, which
can produce models with more details but is more time-consuming
and lack textures.

On the other hand, MagicToon and Chromville have similarities
in their workflows combining paper drawing and AR. They both re-
quire users to draw on real paper and then use mobile devices to in-
teract with stylized textured 3D models in AR environments. While
MagicToon enables creatively sketching and coloring on paper and
generating novel 3D models, Chromville only allows coloring on
pre-made line drawings and texturing pre-made models.

6.2 Participants
43 participants were participated in our user study, 18 male and 25
female. These participants were aging from 10 to 13 years. None
of the subjects had significant 3D modeling experience, 2D artistic
experience or AR experience. All subjects stated that they regularly
draw and color on paper, and a few had experience of drawing via
applications on computers or tablets.

Figure 11 shows two subjects were using our system to model
objects and author cartoon scenes. Figure 12 shows more results
created by the subjects.

6.3 Experimental Design and Procedure
After a 20 minutes training of the three systems, each subject had
to accomplish four tasks:

• TaskrigO: use RigMesh to model a creative object.

• TaskmagO: use MagicToon to model the same object in
TaskrigO by using the model creator.

• TaskmagS: use MagicToon to author a cartoon scene by using
our interactive model editor.

• TaskchrS: use Chromville to color a template page of a cartoon
scene in line drawing.

When modeling objects, the subjects were allowed to look at
some example drawings we provided, but they must use the same
reference drawings during TaskrigO and TaskmagO. If the subject
intended to model an object from imagination, she/he was told to
first draw it on a blank sheet of paper and then used the drawing as
inputs of both RigMesh and MagicToon. The duration of each task
was planned as 15 minutes. For TaskmagS, the subjects were allowed
to use their own drawings along with existed drawings created by
other subjects or provided by us.

After accomplishing each task, the subjects needed to answer
a questionnaire with six questions to measure the six dimensions
of NASA-TLX [17] (physical demand, mental demand, temporal
demand, effort, performance and frustration). After they accom-
plished all tasks, five additional questions were asked:

• Q1: which one do you prefer to use to model an object,
RigMesh or MagicToon?

• Q2: which type of models do you prefer, the detailed but un-
colored models with RigMesh or the textured but coarse mod-
els with MagicToon?

• Q3: which one do you prefer to use to get a coloring cartoon
scene, MagicToon or Chromville?

• Q4: Rank the three systems according to their supports for
your imagination and creativity from high to low.

• Q5: Rank the three systems according to your preference
from high to low.

We chose NASA-TLX because it has been widely used in human
factors research since its introduction in 1988 and most studies ad-
dressed questions about interface design or evaluation [16]. Our
research is also a kind of interface design and therefore we chose
NASA-TLX as a part of our questionnaire to rate perceived work-
load in order to assess the three systems. We did not stick to com-
paring interactions among the three evaluated systems because it is
almost impossible and unfair in consideration of their differences
in interactions. We intended to allow our subjects to experience
those differences and similarities through these tasks and analyze
which types of interactions and results were more attractive to them
through our user study questions.

6.4 Study Results
Figure 13 shows mean values of the six dimensions of NASA-TLX
for all the tasks. Figure 14 shows the vote results of the first three
additional questions. For the last two questions of ranking, we
count a score of 3 for the system in the highest ranking and 1 for the
system in the lowest ranking. Figure 15 shows the average scores of
the last two questions. Figure 16 shows the percentages of the first
ranking frequencies of the three systems in the last two additional
questions, in other words, how many female/male gave the highest
rankings to the system. Note that Figure 14, Figure 15 and Figure
16 also show differences between the results from male and female.

According to Figure 13, we can get some findings. First, the
physical demand values of TaskrigO (M = 2.28) and TaskchrS (M =
2.28) were almost the same and higher than TaskmagO (M = 1.46)
and TaskmagS (M = 1.25). Similarly, the temporal demand values of
TaskrigO (M = 1.86) and TaskchrS (M = 1.88) were almost the same
and higher than TaskmagO (M = 1.30) and TaskmagS (M = 1.39). This
indicated that MagicToon was less time-consuming and laborious
than RigMesh and Chromville.

Compared with the tedious part-by-part modeling operations
in RigMesh, MagicToon combined real-world drawing and a few

Figure 13: Mean values of the six dimensions of NASA-TLX.

touchscreen operations, which was much easier to use for children.
In our experiments, we found that it was not much difficult for the
subjects to draw their own cartoon images. When doing TaskmagO
and TaskmagS, many subjects searched on the Internet to find refer-
ence images of their favorite cartoon characters and then just drew
them on the paper. Some other subjects decided to draw simple im-
ages of their familiar objects, such as trees or animals, which only
took a few minutes. The subjects were free to draw on small pieces
of paper and they had much control on the complexity of the shapes.

We also found that it was not as easy as we predicted for the sub-
jects to color pages when using Chromville. The template pages
often contained a large number of blank regions and the subjects
struggled to decide how to color all of these regions, which in-
creased the physical and mental demand as well as temporal val-
ues of Chromville. In fact, many subjects completed their own
cartoon drawings within 5 minutes but needed more than 10 min-
utes to color the template pages of Chromville. The robustness of
Chromville also affected the results. Chromville failed to recognize
some pages (5 in 43) after the subjects colored the whole pages.
Therefore, those subjects gave high effort rates, which increased
the mean effort value of Chromville. Although MagicToon also
failed to generate some regions of a drawing occasionally, it was
easy to fix the problem by just making their outlines thicker.

RigMesh also showed much higher values in mental demand (M
= 2.91), effort (M = 2.81) and frustration (M = 2.14) values and
lower value in performance (M = 7.70) compared with MagicToon
and Chromville. The subjects often required more than 15 min-
utes to complete their modeling tasks when using RigMesh. Al-
though RigMesh allowed them to model objects with more details,
many children struggled with creating models with sharp corners
and complained the system could not create models with the ex-

Figure 14: Vote results of the first three additional questions.

Figure 15: Mean ranking scores for the last two additional questions.

Figure 16: Percentages of the first ranking frequencies of the three
systems in the last two additional questions.

actly same silhouettes they sketched, which made them easily men-
tally tired and discouraged. Another reason of the low performance
value was that the resulted models of RigMesh lacked texture infor-
mation from their feedbacks.

The results also showed that a majority subjects preferred the
drawing input procedure and textured results of MagicToon than
those of RigMesh, as shown in Figure 14. In addition, more than
50% subjects considered MagicToon stimulate their creativity the
most and chose it as their favorite system among the three systems.
From their feedbacks, we found that coloring and modeling in AR
context gave them a novel way to interact with virtual models when
using MagicToon.

We also found there were distinct differences between the pref-
erences of male and female, as shown in Figure 16. In Q4,
nearly twice as many female subjects gave the highest ranking to
Chromville (P = 32.0%) as RigMesh (P = 16.0%), however the
percentages of male were the same (P = 16.7%). In Q5, the per-
centages of the highest ranking of MagicToon (P = 48.0%) and
Chromville (P = 44.0%) were almost the same from female sub-
jects, which were much higher than the percentage of RigMesh (P
= 8.0%). However, almost the same number of male gave the high-
est rankings to RigMesh (P = 27.8%) and Chromville (P = 22.2%),
which were lower than the number for MagicToon (P = 50%). From
their feedbacks, we found that female enjoyed in coloring activities
much more than male and became frustrated more easily when us-
ing RigMesh compared with male. As a result, female preferences
of RigMesh were much lower than those of the other two systems.
For male subjects, they showed less enjoyment in coloring activi-
ties. Some male subjects stated they did not want to color any tem-
plate pages of Chromville, so RigMesh was more attractive to them
than Chromville. Although MagicToon also required them to draw
on the paper, they were free to quickly create their own objects such

as guns and cars with much control of the sizes and complexity of
the shapes.

6.5 User Feedbacks

We also collected user feedbacks after the subjects had used our
system. In summary, children gave many positive feedbacks when
using our system to model and author cartoon scenes. They spoke
highly of our automatic model creator that saved a lot of their time
to get personalized models. In addition, the interactions with mo-
bile AR in MagicToon were much attractive to them. Children who
were not interested in drawing and coloring so much were also will-
ing to use our system due to that they could quickly obtain person-
alized cartoon models just by sketching on the paper within a few
minutes. The subjects deeply enjoyed showing and sharing their
cartoon scenes with the others. For example, the gun drawings
shown in the right column of Figure 12 were drawn by two male
children. They intended to create different guns to compete with
each other for fun.

During our user study, we found that the copy operation was the
highest frequently used, followed by the merge and affine transfor-
mation operations. The subjects preferred to use simple operations
than those with more steps, such as making animations. We also
asked their suggestions for the future features they wanted to see in
MagicToon. One suggested we could further simplify the anima-
tion operation and include more interesting types of animations. A
few subjects expressed their wishes to add personalized dialogs and
sounds to their virtual cartoon characters. At the end of our user
study, many subjects said they would like to download MagicToon
if it was uploaded to online app stores.

7 LIMITATIONS

Our system still has its limitations. First, the surrounding environ-
ments, such as the lighting conditions, shadowing and reflections,
sometimes influence the robustness of our segmentation algorithm,
especially when the contrast between the outline and region colors
is not very distinct. For example, because the color of the trunk of
the Tree in Figure 12 is dark brown, which is closer to the outline
color, the system might fail to generate a model from the drawing
when the lighting conditions are not so well. The system also fails
to generate models when the outlines are too thin or not enclosed.
This problem can be easily solved by just re-outlining the image,
making the outlines thicker and enclosed. We plan to improve our
segmentation algorithm to avoid these situations in the future.

Second, the 3D models generated by our system lack depth or-
ders between parts. Due to this limitation, some parts of the resulted
model cannot be seen such as the ornaments of the Tree in Figure
10, because they are hidden in the interior of the model. We intend
to employ more intelligent methods to predict the relative depth or-
ders between regions, such as [13]. In addition, our system is best
suitable for front-view cartoon drawings. Models generated from
non-front view drawings might seem counter-intuitive, especially
when observed from side views. Figure 17(a) shows such an ex-
ample. Another limitation of the mesh generation is that it cannot
generate sharp models such as cubes. We will introduce more tools
that allow users to modify the distance field in order to create more
different shapes. Capturing drawings from inclined views may also
result in odd cartoon models, as shown in Figure 17(b). This can
also greatly decrease the tracking quality in AR environments. An
automatic image calibration may ease the situation.

Finally, the original drawings are used as textures for both front
and back faces in our implementation, which may produce unsatis-
factory results. This problem can be fixed by using more advanced
texture synthesis methods.

Figure 17: Failure cases. (a) A failure case when modeling from a
non-front view cartoon image. (b) The left shows the normal model
obtained by capturing a drawing from an overhead view and the right
shows the odd one obtained from an inclined view.

8 CONCLUSIONS

We present MagicToon, a creative 2D-to-3D personalized modeling
system on mobile devices. Given cartoon drawings as inputs, our
model creator can automatically generate 3D textured models with
minimum inputs and overlay them on the real world, bringing life
to flat drawings. We have implemented an interactive model editor
that supports to easily author cartoon scenes in AR environments,
giving full play to children’s innovations. Our results have shown
that MagicToon has relative advantages compared with both tradi-
tional sketch-based modeling systems and AR coloring books. A
possible extension of our system is to support storytelling function-
alities in the future, such as adding dialogs and sounds to the virtual
cartoon characters.

ACKNOWLEDGEMENTS

We would like to thank Fan Jiang, Cheng Yang, Chao Yin and
Jieyu Chu for their assistance and advice during the research. We
are grateful to all the subjects who participated in our user stud-
ies. This work is supported in part by the National Natural Sci-
ence Foundation of China (No. 61173105 and 61373085) and the
National High Technology Research and Development Program of
China (No. 2015AA016404).

REFERENCES

[1] S. Arroyave-Tobón, G. Osorio-Gómez, and J. F. Cardona-McCormick.
Air-modelling: a tool for gesture-based solid modelling in context dur-
ing early design stages in ar environments. Computers in Industry, 66,
2015.

[2] I. Baran and J. Popović. Automatic rigging and animation of 3d char-
acters. In ACM Transactions on Graphics (TOG), volume 26, 2007.

[3] O. Bergig, N. Hagbi, J. El-Sana, and M. Billinghurst. In-place 3d
sketching for authoring and augmenting mechanical systems. In
Mixed and Augmented Reality, 2009. ISMAR 2009. 8th IEEE Inter-
national Symposium on, 2009.

[4] M. Billinghurst, H. Kato, and I. Poupyrev. Magicbook: Transition-
ing between reality and virtuality. In CHI ’01 Extended Abstracts on
Human Factors in Computing Systems, CHI EA ’01, 2001.

[5] P. Borosán, M. Jin, D. DeCarlo, Y. Gingold, and A. Nealen. Rigmesh:
Automatic rigging for part-based shape modeling and deformation.
ACM Trans. Graph., 31(6), 2012.

[6] Chromville. Chromville. https://chromville.com/.

[7] A. Clark and A. Dunser. An interactive augmented reality coloring
book. In 3D User Interfaces (3DUI), 2012 IEEE Symposium on, 2012.

[8] Crayola. Crayola color alive. http://www.crayola.com/.
[9] E. S. De Lima, B. Feijó, S. D. Barbosa, A. L. Furtado, A. E. Ciarlini,

and C. T. Pozzer. Draw your own story: Paper and pencil interactive
storytelling. Entertainment Computing, 5(1), 2014.

[10] V. Developer. Sdk, unity extension vuforia–2.8, 2014.
[11] Disney. Color and play. http://www.onlycoloringpages.com/.
[12] P. Fiala and N. Adamo-Villani. Arpm: an augmented reality interface

for polygonal modeling. In Mixed and Augmented Reality, 2005. Pro-
ceedings. Fourth IEEE and ACM International Symposium on, 2005.

[13] D. Geiger, H. Pao, and N. Rubin. Salient and multiple illusory sur-
faces. In Computer Vision and Pattern Recognition, 1998. Proceed-
ings. 1998 IEEE Computer Society Conference on, 1998.

[14] Y. Gingold, T. Igarashi, and D. Zorin. Structured annotations for 2d-
to-3d modeling. In ACM SIGGRAPH Asia 2009 Papers, SIGGRAPH
Asia ’09, 2009.

[15] N. Hagbi, R. Grasset, O. Bergig, M. Billinghurst, and J. El-Sana. In-
place sketching for content authoring in augmented reality games. In
Virtual Reality Conference (VR), 2010 IEEE, 2010.

[16] S. G. Hart. Nasa-task load index (nasa-tlx); 20 years later. In Pro-
ceedings of the human factors and ergonomics society annual meet-
ing, volume 50, 2006.

[17] S. G. Hart and L. E. Staveland. Development of nasa-tlx (task load
index): Results of empirical and theoretical research. Advances in
psychology, 52, 1988.

[18] W. Hürst and J. Dekker. Tracking-based interaction for object cre-
ation in mobile augmented reality. In Proceedings of the 21st ACM
international conference on Multimedia, 2013.

[19] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A sketching interface
for 3d freeform design. In Proceedings of the 26th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’99,
1999.

[20] S. Magnenat, D. T. Ngo, F. Zund, M. Ryffel, G. Noris, G. Rothlin,
A. Marra, M. Nitti, P. Fua, M. Gross, et al. Live texturing of aug-
mented reality characters from colored drawings. Visualization and
Computer Graphics, IEEE Transactions on, 21(11), 2015.

[21] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa. Fibermesh: De-
signing freeform surfaces with 3d curves. In ACM SIGGRAPH 2007
Papers, SIGGRAPH ’07, 2007.

[22] L. Olsen, F. F. Samavati, and J. A. Jorge. Naturasketch: Modeling
from images and natural sketches. Computer Graphics and Applica-
tions, IEEE, 31(6), 2011.

[23] S. Oviatt. Human-centered design meets cognitive load theory: de-
signing interfaces that help people think. In Proceedings of the 14th
annual ACM international conference on Multimedia, 2006.

[24] R. Schmidt, T. Isenberg, P. Jepp, K. Singh, and B. Wyvill. Sketch-
ing, scaffolding, and inking: A visual history for interactive 3d mod-
eling. In Proceedings of the 5th International Symposium on Non-
photorealistic Animation and Rendering, NPAR ’07, 2007.

[25] R. Schmidt, B. Wyvill, M. C. Sousa, and J. A. Jorge. Shapeshop:
Sketch-based solid modeling with blobtrees. In ACM SIGGRAPH
2007 Courses, SIGGRAPH ’07, 2007.

[26] J. R. Shewchuk. Delaunay refinement algorithms for triangular mesh
generation. Computational geometry, 22(1), 2002.

[27] J. Vollmer, R. Mencl, and H. Mueller. Improved laplacian smoothing
of noisy surface meshes. In Computer Graphics Forum, volume 18,
1999.

[28] T. Zhang and C. Y. Suen. A fast parallel algorithm for thinning digital
patterns. Communications of the ACM, 27(3), 1984.

[29] F. Zünd, M. Ryffel, S. Magnenat, A. Marra, M. Nitti, M. Kapadia,
G. Noris, K. Mitchell, M. Gross, and R. W. Sumner. Augmented cre-
ativity: Bridging the real and virtual worlds to enhance creative play.
In SIGGRAPH Asia 2015 Mobile Graphics and Interactive Applica-
tions, SA ’15, 2015.

